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Abstract

Non-volatile main memory (NVMM) technologies promise
byte addressability and near-DRAM access that allows de-
velopers to build persistent applications with common load
and store instructions. However, it is difficult to realize these
promises because NVMM software should also provide crash
consistency while providing high performance, and scalabil-
ity. Durable transactional memory (DTM) systems address
these challenges. However, none of them scale beyond 16
cores. The poor scalability either stems from the underlying
STM layer or from employing limited write parallelism (sin-
gle writer or dual version). In addition, other fundamental
issues with guaranteeing crash consistency are high write
amplification and memory footprint in existing approaches.
To address these challenges, we propose TimeStone: a

highly scalable DTM systemwith lowwrite amplification and
minimal memory footprint. TimeStone uses a novel multi-
layered hybrid logging technique, called TOC logging, to
guarantee crash consistency. Also, TimeStone further relies
on Multi-Version Concurrency Control (MVCC) mechanism
to achieve high scalability and to support different isolation
levels on the same data set. Our evaluation of TimeStone
against the state-of-the-art DTM systems shows that it sig-
nificantly outperforms other systems for a wide range of
workloads with varying data-set size and contention levels,
up to 112 hardware threads. In addition, with our TOC log-
ging, TimeStone achieves a write amplification of less than
1, while existing DTM systems suffer from 2×-6× overhead.
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1 Introduction

New emerging non-volatile main memory (NVMM) tech-
nologies, such as Intel Optane [2, 63], provide persistence
along with traditional main memory characteristics [84, 94],
such as byte-addressability and low access latency. In addi-
tion, the NVMM offers data durability and larger in-memory
capacity at a significantly lower $/GB compared to traditional
DRAMs [14, 59, 75, 82, 92]. Although NVMMs incur higher
read-write latency compared to traditional DRAMs [17, 42,
54], they enable software to have a larger capacity and almost
attain free durability of data.
While NVMM technology is promising, it poses system

developers with several new challenges such as guarantee-
ing crash consistency with a minimal write amplification,
scalability, and high performance at high core counts. Even
for byte-addressable NVMMs, guaranteeing crash consis-
tency requires high latency logging operations in the crit-
ical path, complicated by the modern out-of-order proces-
sors that can reorder cacheline evictions. As a consequence,
achieving crash consistency without impacting the many-
core scalability and performance has become an onerous
task [6, 11, 15, 21, 25, 27, 51, 90].
Nevertheless, manycore scalability is becoming an in-

evitable design principle when designing NVMM software
as NVMMs are expected soon to be a part of data center
manycore servers [8]. For example, the first public Cloud
service of DCPMM used by SAP HANA, an in-memory data-
base system, which requires manycore parallelism [8]. So
a competent NVMM library should provide better perfor-
mance and scalability, have a minimal write amplification,
be memory efficient, and have broad-ranging applicability.

Unfortunately, none of the prior work exhibit all the above
capabilities. For instance, prior concurrent durable data struc-
ture (CDDS) libraries [4, 13, 30, 41, 55, 65, 66, 70, 71, 86, 91,
95, 96] leverage application’s data structure knowledge to
achieve better scalability but do not guarantee atomicity of
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Figure 1. Performance comparison of DTM systems for concurrent
hash tables with 2% update. Except TimeStone, prior systems suffer
from poor scalability and high write amplification.

multiple operations, such as atomically adding two nodes
to a list (durable composability). Moreover, current CDDS
libraries do not guarantee consistency for data (full-data
consistency), rather delegate it to the application develop-
ers. Failing to guarantee durable composability and full-data
consistency delimits the usage of such libraries.

Contrary to CDDS libraries, existing DTM approaches [18,
24, 32, 57, 62, 85] support durable composability and provides
full-data consistency. However, our analysis shows that none
of the DTM systems scales beyond 16 cores (see Figure 1). For
example, DudeTM [57] and Mnemosyene [85] scale poorly
because of the underlying STM, which is known for its poor
scalability [10]. They extend STM with an extra durability
layer, which incurs a high write amplification (∼4-7×), as
shown in Figure 1 and Table 1 in the course of guarantee-
ing crash consistency. On the other hand, Romulus [18] and
KaminoTX [62] minimize write amplification by maintaining
a full backup of the NVMM, which derails the cost effective-
ness of NVMM. Moreover, existing DTM systems support
limited write parallelism (refer to Table 1) impacting their
scalability, or leaving it entirely to the application develop-
ers to use locks [32]. More recently, Pisces [24] attempts to
provide scalability by providing snapshot isolation. Unfortu-
nately, only providing snapshot isolation delimits the use for
applications requiring stronger isolation model. Importantly,
the dual version concurrency control and the synchronous
write during log reclamation in Pisces are bound to affect
scalability [45], also increasing write amplification like other
DTM approaches. 1

To address all these problems, we propose a new DTM sys-
tem, named TimeStone, which achieves 1) scalability across
multiple cores, guarantees 2) crash consistency with a signifi-
cantly lower write amplification (< 1) and also maintains 3)
minimal additional memory footprint. At its core, TimeStone
adopts MVCC to achieve high concurrency and scalability
but introduces several new principles to MVCC for scalable
persistency in NVMM.

We believe that MVCC is a better design choice for DTM
frameworks because of its inherent capabilities to support
full-data consistency and the ability to run concurrent trans-
actions with different isolation guarantees. To tackle the

1As of this paper publication, the source code of Pisces is not available.

write amplification problem,we propose a novelmulti-layered
hybrid DRAM-NVMM logging scheme called the TOC log-
ging with the ability to absorb the write-traffic to NVMM
and significantly reduce write amplification. Further, to over-
come the garbage collection and log reclamation overheads
ofMVCC [89], which impacts write throughput, we equip the
TOC logging with a scalable and concurrent log reclamation
scheme. This paper makes the following contributions:
• We introduce TimeStone, which is the first highly scalable
MVCC-based DTM system designed for NVMM.

• We propose a novel multi-layered hybrid DRAM-NVMM
logging scheme, named TOC logging to significantly reduce
the write traffic and write amplification in the NVMM.

• Wepropose a scalable and concurrent log reclamation scheme
to avoid log reclamation becoming a bottleneck in our
MVCC-based design.

• We design TimeStone to concurrently support three dif-
ferent isolation levels (i.e., linearizability, serializability,
and snapshot isolation) on the same data set. To the best
of knowledge, TimeStone is the first DTM framework to
support mixed isolation levels.

• We provide a familiar programming model hiding the com-
plexities of MVCC, concurrency, and durability from the
user with C++ API.

• We evaluate TimeStone with key data structures and real-
world workloads and our results show that TimeStone
outperforms state-of-the-art DTM systems with signifi-
cantly higher performance and lower write amplification.

2 Overview of TimeStone

We first elucidate our design goals and how we incorporate
them in TimeStone, and then describe the key features of
TimeStone with an illustrative example (see Figure 2).
2.1 Design Goals

Write-Aware System Design. Given the higher write la-
tency, limited endurance, and high energy consumption of
NVMM writes [17, 29, 36, 43, 52, 74, 75, 81], it is essential
that NVMM applications should be write-aware. Unlike pre-
vious DTM systems [18, 32, 57, 62, 85] that suffer from high
write amplification, we aim to significantly reduce amplifica-
tion by making TimeStone write-aware. We adopt a hybrid
multi-layered logging design (TOC logging) to absorb and
coalesce a large chunk of redundant NVMM writes.
Full-Data Consistency Guarantee. To support crash con-
sistency, it is critical to guarantee consistency for applica-
tions’ data stores (data) as well as applications’ internal data
structure (metadata), which we term as full-data consistency.
Failing to guarantee full-data consistency affects recovery
and can lead to data corruption in the NVMM. For exam-
ple, recent log-free data structure [19] designs guarantee
only the consistency of pointers in a durable data structure
(called link consistency) and delegates the data consistency
to the application developer. Ignoring data consistency adds
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DTM Systems Isolation Parallelism Durability Additional Memory NVMMWrite

Level RR RW WW How When DRAM NVMM Amplification

PMDK [32]†+ LN × UNDO ⇒] - log ≥ 2
Mnemosyne [85]‡ LN REDO ⇒] - log 4-7
KaminoTX [62]+ LN Backup ⇒] - NVMM ≥ 2
DudeTM [57]∗ LN REDO ⇒] log + NVMM log 4-6
Romulus [18]∗ LN × × Backup ⇒] - NVMM 2
Pisces [24]+ SI REDO ⇒] - log ≥ 2

TimeStone SI/SR/LN TOC ⇒] TLog OLog + CLog ≤ 1
NOTE: SI: snapshot isolation SR: serializability LN: linearizability

×: not supported : partially supported : fully supported ⇒]: immediate durability ⇒] : eventual durability

Table 1. High-level comparison of DTM systems for NVMM. TimeStone is a DTM based on MVCC (Multi-Version Concurrency Control),
which makes supporting multiple isolation levels (i.e., mixed isolation levels) possible. Our novel TOC logging absorbs NVMMwrites through
three layers of logging so TimeStone can provide extremely low write amplification (below 1) on NVMM while providing immediate
durability resulting in high performance and scalability. † While PMDK does not provide isolation, we assume that a PMDK transaction
uses a readers-writer lock. We get write amplification by measuring by ourselves for ∗ or by analyzing the design of + or by referring the
measured value for ‡ in Romulus [18]. We define write amplification as the ratio of the actual NVMM writes by application requests while
Romulus counts only the additional data written in NVMM.

burden to the developer as it demands proper knowledge
on correctly flushing the stores to ensure a proper recovery
without any data corruption. We aim to provide full-data
consistency without compromising the system performance
and scalability.
Immediate Durability. For DTM systems, it is important
to make updates immediately durable upon transaction com-
mit. Prior DTM systems (e.g., DudeTM [57]) defer durability
to reduce commit latency; however adopting relaxed durabil-
ity (i.e., eventual durability) has the problem of losing some
updates while recovering from a failure. In TimeStone, we
make all the successfully committed updates immediately
durable which enables our system to guarantee a determin-
istic and loss-less recovery and all of this without compro-
mising the performance of the live transactions unlike some
of the prior techniques [12, 23, 57, 58].
Mixed Isolation Levels. The level of required isolation
guarantee depends on the application semantics and there is
no single isolation level that can suit all application types. For
example, even though snapshot isolation can provide good
performance with more parallelism, it cannot be used for
developing data structures without addressing write skew
anomaly [9, 24, 45, 60]. On the other hand, stronger isola-
tion levels such as linearizability might be an overkill for
OLAP-class applications, which can tolerate weaker isolation
reading slightly stale data [79]. We believe that supporting
multiple isolation levels for the same data set is essential
considering the rapid growth of data size, and the varied
requirements of applications. Now, the beauty of MVCC is
that it provides a way to represent multiple isolation levels.
TimeStone supports any number of concurrent transactions
running with three different isolation levels (linearizability,
serializability and serializable snapshot isolation) to operate
on the same data set.

Decentralized Design for Scalability. To achieve scala-
bility on a manycore system, we should avoid any central-
ized scalability bottleneck in TimeStone. Prior DTM tech-
niques [57, 62] use a centralized lock table notorious for scal-
ability bottlenecks, and similarly, transaction techniques that
use copy-on-write (CoW) for performing updates [22, 62]
have centralized address mapping table that hinders scalabil-
ity. We designed TimeStone not to have such a central entity
by allocating resources at the thread level (e.g., per-thread
logging) and using hardware timestamps for coordination
among threads.
2.2 Design Overview

We explain the key design features of TimeStone and how
we realized our design goals with an example in Figure 2.

2.2.1 Multi-Versioning

We adopt MVCC in TimeStone to exploit its inherent ben-
efits for key features of TimeStone. Since MVCC makes
out-of-place updates by composing a new version, which is a
full replica of the respective original object, making the ver-
sion durable guarantees full-data consistency. Importantly,
because each version is discrete, it can concurrently sup-
port different isolation levels. Given these benefits, naive
adoption of MVCC will incur a lot of write traffic, and af-
fect the write endurance of NVMM with frequent writes
defeating our design goals of minimizing write amplification
and achieving high scalability. We solve these problems by
using TOC logging and a scalable log reclamation scheme
(see Figure 2 and §3).

2.2.2 TOC Logging

As illustrated in Figure 2, in TOC logging, we use a volatile
log on the DRAM, named transient version Log (TLog), and
two non-volatile logs, namely operational log (OLog) and
checkpoint log (CLog). Essentially, each one of the logging
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Figure 2. Illustrative example of adding a node in a TimeStone linked list. A thread adds a node C to a linked list in a TimeStone transaction
(ts_txn::run()) with a serializable isolation level (ts::serializable). Consider a transaction that starts at timestamp 45 (i.e., local-ts
= 45) and commits at 50 (i.e., commit-ts= 50). TimeStone first creates a copy of node B in TLog (B’) and updates its next pointer to node C 1 .
When the transaction commits, TimeStone persists the executed operation (add(C)) to OLog making the transaction immediately durable
2 . Steps 3 and 5 denotes the log capacity crossing the high-water mark and this triggers the checkpointing for TLog reclamation 4 and
writeback for CLog reclamation 6 . During checkpointing, TimeStone checkpoints the latest transient copy (node B’) to the CLog so the
TLog can be reclaimed 4 . In the CLog reclamation, TimeStone writes back the latest checkpoint copy (node B’) to the master object and the
checkpoint log can be reclaimed safely 6 . The reclamation process is detailed in §3.9

layers is key to realizing our design goals. The volatile TLog
reduces write amplification by absorbing redundant writes
to NVMM and it is also key to achieving full-data consistency.
The OLog is important to guarantee immediate durability and
the CLog guarantees a deterministic recovery. For scalability
without a central bottleneck, all three logs are per-thread logs
and updates are synchronized using the hardware timestamp.
The TOC logging is a combination of the traditional redo
logging and the operational logging, but our novelty lies
in the multi-layered hybrid placement of logs (in DRAM
and NVMM) and their usage for DTM in tandem. Next, we
explain how the three logs are used in a typical TimeStone
transaction.
Transient Version Log. As shown in the step 1 in Fig-
ure 2, before modifying an object, the thread first makes the
full copy of the respective master object (transient copy) in
the TLog by locking the object (ts_lock in Figure 3). It then
executes transactions on the respective copy, and upon suc-
cessful commit, the transient copy object is added to the ver-
sion chain. During the NVMM writeback, the thread writes
only the latest transient copy ( 4 in Figure 2). Consequently,
a large chunk of redundant NVMM writes is absorbed in the
TLog, which is the key to achieving a lower NVMM write
amplification.
Operational Log. The OLog is pivotal in guaranteeing im-
mediate durability upon transaction commit. OLog stores
only the transaction semantics ( 2 in Figure 2), which is es-
sentially a function pointer and its argument of a transaction,
and re-executes them during recovery. Unlike the traditional
undo or redo logging, OLog does not log the entire transac-
tion data, and neither incurs read indirection nor requires

multiple store flushes. As a result, OLog reduces write amplifi-
cation, improves scalability, and guarantees durability using
a single persistent barrier (clwb and sfence) per transaction.
Checkpoint Log. The CLog is essential to maintaining the
master object in a consistent state and to tolerate any po-
tential failure during writing back the checkpoint copy ( 6
in Figure 2). If master objects are inconsistent, re-executing
OLog does not guarantee recovery. During recovery, the mas-
ter objects are first reset to the most recent checkpointed
status available in the CLog.

2.2.3 Mixed Isolation Levels

With the goal of making TimeStone a generic framework
suitable for a wide range of applications, TimeStone sup-
ports multiple isolation levels–linearizability, serializability,
and snapshot isolation–on the same instance of an appli-
cation such that transactions with different isolation lev-
els can run concurrently. Applications that require high
performance but can tolerate write-skew or slightly stale
reads should use TimeStone’s snapshot isolation, while ap-
plications that needs stricter isolation levels can fall back
to linearizability or serializability. For linearizability and
serializability, TimeStone additionally employs a read set
validation at commit time where we check if any of the ob-
jects dereferenced has been updated during the course of
current transaction; If so, we simply abort and retry again.
Note that the serializability and linearizability differs in the
object derefernce semantics and still follow the same read
set validation procedure in our design.

2.2.4 Scalable Garbage Collection

TimeStone maintains fixed size logs and hence the memory
usage of logs are limited. If one ormore logs becomes full, this
could block all writes until logs are reclaimed. Hence garbage
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1 struct node : public ts::ts_object { // Inherit ts_object
2 int64_t val; // data on NVMM
3 // p_next: persistent pointer to a master object
4 ts::ts_master_ptr<node> p_next;
5 };
6 class list : public ts::ts_object { // Inherit ts_object
7 // p_head: persistent pointer to a master object
8 ts::ts_master_ptr<node> p_head;
9 public:
10 bool add(int64_t val) {
11 // p_prev, p_next: version-resolved pointer to a copy object
12 ts::ts_copy_ptr<node> p_prev = p_head;
13 ts::ts_copy_ptr<node> p_next = p_prev->p_next;
14 while (p_next) {
15 if (p_next->val >= val) {
16 // Lock the object (p_prev) before update
17 // creating a transient copy of p_prev in TLog
18 ts::ts_lock(p_prev);
19 // Allocate a master object on NVMM
20 ts::ts_copy_ptr<node> p_new_node = new node;
21 p_new_node->val = p_next->val;
22 // In assigning to a persistent pointer, a persistent
23 // master object pointer of a copy will be assigned.
24 p_new_node->p_next = p_next;
25 p_prev->p_next = p_new_node;
26 return true; } // end of if
27 // In assigning to a copy pointer, a version-resolved
28 // copy pointer will be assigned after version resolution.
29 p_prev = p_next;
30 p_next = p_prev->p_next; } // end of while
31 return false; } // end of add()
32 };
33 void thread_main(int64_t v) {
34 // Run a transaction with given isolation level and function.
35 // Upon abort, ts_txn::run internally re-tries the transaction.
36 ts::ts_txn::run(ts::serializable,
37 [&]() { p_list->add(v); p_list->add(v+1); });
38 }
39 int main(int argc, char *argv[]) {
40 // Spawn a thread for concurrent transaction execution.
41 ts::ts_thread worker(thread_main, argc);
42 worker.join();
43 return 0;
44 }

Figure 3. A linked list adding two nodes in one transaction.

collection can directly impact write throughput. Also, a syn-
chronous and non-scalable garbage collection scheme can
quickly become a bottleneck hampering the performance of
the system [89].

For the garbage collection to be scalable, TimeStonemust
identify safe objects to reclaimwithout any centralized lookup
or coordination. Importantly, garbage collection must be
NVMM-write aware so that it does not increase direct writes
to NVMM. Hence, TimeStone employs a timestamp-based
reclamation scheme where decisions like what/when to re-
claim are solely made based on the object-local timestamp
without accessing shared structures. To harness concurrency
in the garbage collection, TimeStone delegates responsibil-
ity of reclamation to each thread that holds the log itself (i.e.,
concurrent reclamation). To further reduce NVMMwrites, we
introduce best-effort reclamation, which reclaims objects that
do not incur NVMM writes. We explain the details in §3.9.

2.2.5 Programming Model

TimeStone follows the programming model of object-
level, lock-based software transactional memory providing
full ACID guarantee on NVMM. TimeStone provides C++

API so programming in TimeStone is just writing a typi-
cal C++11 code using TimeStone base classes and APIs as
shown in Figure 3.

User-defined persistent structures (e.g., struct node in Fig-
ure 3) that inherit ts_object (line 1, 6) will be allocated
on the NVMM (line 20). To hide the complexity of NVMM
memory management, concurrency control, and version
resolution in MVCC, TimeStone provides two smart point-
ers; ts_master_ptr points to a master node on NVMM and
ts_copy_ptr points to a version-resolved copy, which is part
of the version chain on TLog. Essentially, ts_copy_ptr should
be used in the function that accesses the ts_object such as
list::add(). Type conversion between two smart pointer
types involves version resolution (line 13, 24) in Figure 4.
To modify an object, first it should be locked using ts_lock
(line 18). Once a lock is acquired, ts_copy_ptr will be up-
dated to pointing a new transient copy of the object ( 1
in Figure 2). A code executed within ts_txn::run is a full
ACID transaction and the required isolation level can be
specified per transaction (line 37). Upon abort, ts_txn::run
internally re-tries the transaction. ts_thread is a shallow
wrapper inheriting std::thread that registers and deregis-
ters a thread to TimeStone (line 41).

3 Design of TimeStone

Wefirst describe the basicmetadata structures ofTimeStone’s
transactional object followed by versioning, logging, com-
mitting, and recovery mechanisms.
3.1 Object Representation

In TimeStone, updates to NVMM are in object granularity.
To make TimeStone NVMM write-aware, we maintain fre-
quently modified metadata (control headers) and persistent
intermediate copy objects on DRAM in addition to applica-
tion data objects. We next discuss their details.
Master Object on NVMM. In TimeStone, every persis-
tent data structure is represented by a non-volatile master
object that acts as a handle for these persistent structures. To
reduce overheads of frequent access of a master object on
slow NVMM, TimeStone also maintains a volatile control
header per master object on DRAM as shown in Figure 4.
This volatile pointer (p-control) is validated by matching
the gen-id cached in the master object and a global gen-id,
which increments each time the non-volatile heap is loaded.
Copy Object. TimeStone maintains two different copy ob-
jects: a transient copy and a checkpoint copy. A transient
copy is created on TLog during update operations while a
checkpoint copy is created on CLog when the transient copy
is checkpointed during TLog reclamation ( 4 in Figure 2).
As illustrated in Figure 4, a copy object caches essential
timestamp information that is required to make object-local
decisions during version resolution and log reclamation.
Control Header on DRAM. As shown in Figure 4, con-
trol header stores per-object run time metadata such as the
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Figure 4. Object representation and version resolution in TimeStone. An object consists of one master object on NVMM and one or more
transient copies in a transient version log (TLog) on DRAM and checkpoint copies in a checkpoint log (CLog) on NVMM. Each copy has a its
commit timestamp (commit-ts) as well as timestamps of older and newer versions (older-ts, newer-ts) to make decisions without pointer
chasing. A version chain is ordered from the latest to the oldest version starting at a control header on DRAM. Object dereferencing finds the
closest past version (commit-ts) to when a thread starts a transaction (local-ts). For example, when local-ts of a thread is 85, the thread
will read B” with commit-ts 80 (e.g., Thread 1). The version chain traversal should stop at the last checkpoint boundary because transient
versions older than the last checkpoint timestamp (ckpt-ts) would already have been reclaimed. In this case, a thread should fall back to the
latest version on NVMM pointed to by np-latest on a control header (e.g., Thread 2).

version chain head (p-copy) and lock-status (p-lock). The
control header is created when the master object is first
updated. The decentralization of metadata enables faster
metadata lookup and update performance and also signifi-
cantly reduces the frequency of NVMM access. The control
header serves as the entry point to access copy objects and it
also helps copy objects to reference their respective master.
3.2 Version Chain Representation

In TimeStone, the version chain is a singly linked list with
the newest object at the head of the linked list. As illustrated
in Figure 4, version chain traversal is delimited by the latest
checkpoint timestamp (ckpt-ts) because transient copies
older than the checkpoint boundary would have already
been reclaimed. For any access request beyond the check-
point boundary, the latest checkpoint copy is dereferenced
via the control header. The latest transient copy is always
stationed at the head, so new threads starting a transaction
may traverse until the checkpoint boundary in the worst
case. Therefore, the length of a version chain does not affect
performance or chain traversal cost.
3.3 Object Version Dereferencing

Our design provides a generic versioning support that can
satisfy snapshot isolation, serializability, and linearizability.
A thread does a control header lookup to get to the version
chain head and traverses the chain. The thread compares its
local-ts against the commit-ts of the transient copies and
dereferences the closest past version, which is the most re-
cent transient copy with commit-ts lesser than the local-ts.
If a thread reaches the checkpoint boundary (ckpt-ts), it
falls back to the control header and then the latest check-
point copy (np-latest) is dereferenced. If a control header
does not exist yet, the thread dereferences the master object.
Note that these dereference semantics are the same for both

snapshot isolation and serializability. In case of linearizabil-
ity, we dereference the latest transient copy in the version
chain without any further traversal. This is because lineariz-
ability requires reading the latest object and in the situation
where the latest transient copy is a future version for the
current transaction, we abort and retry to preserve the object
dereferencing correctness.
3.4 Updating an Object

Before updating an object, the writer-thread attempts to lock
the control header of the associated master object; if the
lock could be acquired, a transient copy of the respective
master object is created on TLog ( 1 in Figure 2) and p-lock
in the control header (pointing to NULL) is atomically modi-
fied to point this transient copy. A non-NULL p-lock means
that there is an ongoing update and hence the thread aborts
(see §3.6). Note these lock failures (i.e., p-lock is not NULL)
are hidden from the user and in such cases, the writer-thread
aborts and retries. The absence of a control header indicates
no updates to the master object. Hence the current writer-
thread is responsible for creating and locking the control
header.
3.5 Committing a Transaction

A writer-thread maintains a private write set on TLog con-
sisting of all updates made in a transaction. We first persist
our OLog entries to make them durable and then we make all
updates in the write set atomically visible; we add each of
the copy objects (p-lock) to respective version chain head
(p-copy) and then atomically update the commit-ts of the
write set to the current hardware clock. Finally, we update
the commit-ts field in the new copy objects with the write
set commit-ts. For stricter isolation levels such as lineariz-
ability and serializability, an additional read set validation is
carried out at the beginning of a commit procedure. The read
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set validation checks if the view of an object has changed
since the arrival of this transaction. If so, then the current
transaction is aborted and all updates are discarded.
3.6 Aborting a Transaction

A writer-thread aborts a transaction upon a ts_lock failure
or in the event of stale-reads upon read set validation or
reading a future version in linearizability. When aborting
a transaction, the writer-thread unlocks all control headers
by resetting p-lock to NULL and rolls back the log space. We
also free the new master objects that were allocated inside
the aborting transaction.
3.7 Timestamp Allocation

For timestamp allocations, we leverage the hardware clock
(rdtscp in x86 architectures) to prevent the timestamp alloca-
tion from becoming a scalability bottleneck [44, 47, 56, 83, 93].
As hardware clocks can have a constant skew between pro-
cessor cores which can lead to incorrect ordering, we use the
ORDO primitive [44] and avoid this inconsistency. ORDO
assumes there is a constant clock drift among cores and it
compensates for the drift using the pre-measured ORDO
boundary. ORDO is a software-based technique and only
assumes invariant timestamp counter, which is already sup-
ported in x86 and many other architectures [44].
3.8 TOC Logging

All the logs in TimeStone are modeled as per-thread circular
logs with new entries updated at the tail. TLog is created
in the volatile memory while CLog and OLog are placed in
the non-volatile heap. CLog and OLog are accessible from
the root object of the non-volatile heap. Before terminating
TimeStone, but after all threads safely exit the TimeStone
transaction, we free all logs on the non-volatile heap and
make the root object to point to NULL. Thus, a NULL root
object upon starting TimeStone signifies safe termination
in the previous run. We leverage this design invariant to
trigger the recovery.
3.9 Log Reclamation

Log reclamation or garbage collection (GC) is critical as it
directly impacts the write performance of the system.
Concurrent Reclamation. To prevent garbage collection
being bottlenecked either by a single thread or due to syn-
chronouswaiting [60], we employ a self-reclamation scheme [45]
in which, the thread that holds the log is responsible for the
reclamation of its state. This design is scalable, asynchro-
nous, thread-local, cache- and prefetcher-friendly [36]. Each
thread at the transaction boundary checks if it needs to per-
form a log reclamation. If so, it triggers the gp-detector
thread to broadcast the last detected grace period timestamp,
which we will define shortly. To avoid race conditions, we
add a reclamation barrier to avoid any new trigger before the
currently running reclamation is finished. To ensure liveness
of log reclamation, the gp-detector thread reclaims the log
of a thread which did not initiate reclamation.

What to Reclaim?We employ a RCU-style grace period de-
tection algorithm to identify the safe reclaimable objects [26,
45, 60, 61]. Grace period is an interval in which all threads in
TimeStone are outside or have exited the transaction bound-
ary. Grace period timestamp is the time at which the a grace
period detection begins. A background gp-detector thread
continuously detects the grace period and broadcasts the
grace period timestamp to all thread when log reclamation
is requested.
An object is obsolete if it has a newer version, so it is

no longer visible to new threads entering transactions and
does not have any new references in a transaction. When
all threads reading an obsolete object exit the transaction,
the obsolete object becomes invisible and is safe to reclaim.
Thus, as per grace period semantics, a copy object can be
safely reclaimed if one grace period has elapsed since it became
obsolete. The grace period semantics guarantee that there
cannot be any thread in a transaction with local-ts less
than two grace periods. So TimeStone always waits for at
least two grace periods to elapse before reclaiming any copy
object. Note that we cannot reclaim a copy object if it is the
latest version of the associated master object as it is still
visible to all threads. The copy object has to be checkpointed,
followed by the completion of one more grace period before
the copy object can be safely reclaimed.
When to Reclaim? Ideally, deferring reclamation until the
log comes to capacity improves the chance for coalescing up-
dates which will reduce the frequency of NVMM writebacks.
However, we can not afford the log resources to become
full as it can block writers hampering system performance.
Keeping this in mind, we maintain a preset high-water mark
and low-water mark for all three logs. When a log utilization
exceeds high-water mark, the log is fully reclaimed incurring
NVMM writes (checkpoint reclamation in TLog and write-
back reclamation in CLog). When the utilization is between
low and high-water mark, the log is reclaimed in a best-effort
mode. In the best-effort reclamation, a thread reclaims its
log until the first writeback to NVMM is required. The first
writeback is the point at which the thread encounters the
latest transient copy object of the respective master object.
Stopping at the first writeback allows coalescing updates as
future updates on the same object is expected. The deferred
object will be reclaimed or written back in the next recla-
mation cycle. Below we explain how each of log reclaims in
detail.
Transient Version LogReclamation. In checkpoint recla-
mation passing the high-water mark, a thread first checks if
this transient copy object is the latest version, then it check-
points the copy to the CLog if one grace period has elapsed
since this copy object is committed. After checkpointing,
any future reference to this object is served from CLog and
the checkpoint boundary (ckpt-ts) is set to the grace period
timestamp when starting the reclamation. We then wait for
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one more grace period to pass and then safely reclaim the
copy from TLog. After this, all versions with commit-ts less
than ckpt-ts are deemed safe to be reclaimed. This ensures
that the object does not have any references. Note that we
wait for one grace period before checkpointing and one ad-
ditional grace period after checkpointing making it at least
two grace periods since the arrival of the copy object and
that makes it safe to reclaim as per grace period semantics.
Alternatively, if the entry is not the latest version then it is
simply skipped so that the thread that has the latest version
in its TLog will checkpoint that entry.

In the best-effort reclamation of TLog, the thread reclaims
its TLog entries until it encounters the first writeback to
NVMM. It is prudent and optimal to defer writeback until log
utilization goes above the high-water mark. This deferring
helps reduce the frequency of writeback to NVMM.
Checkpoint Log Reclamation. Writeback reclamation in
CLogworks similar to checkpoint reclamation in TLog except
that it writebacks the checkpoint copy to its corresponding
master object. A thread performs writeback only if it is the
latest checkpoint copy, else it is skipped and the thread that
has the latest checkpoint copy in its CLog will writeback
during its reclamation. Again, similar to TLog, we wait for
two grace periods to pass before safely reclaiming an object.
This asynchronous waiting for at least two grace period
is to ensure that there is no any existing reference to this
checkpoint copy in TimeStone transactions.

The best-effort reclamation of CLog also follows a similar
semantics of TLogwhere the thread stops reclaiming its CLog
when it encounters the first writeback to the master. Again,
this deferring the writeback is done with a goal to coalesce
multiple checkpoint copies associated with the same master
object and then writeback the latest copy when the thread
reclaims its CLog in the writeback reclamation.
Operational Log Reclamation. An OLog entry is deemed
to be reclaimable based on the last checkpoint boundary
(ckpt-ts). So all the entries with commit-ts less than the
ckpt-ts can be reclaimed anytime, independent of any grace
period semantics. When OLog utilization goes above the high-
water mark, it triggers checkpoint reclamation of TLog and as
a result, ckpt-ts is updated. At this point, OLog can discard
all the entries with the commit-ts lesser than the ckpt-ts.
3.10 Freeing an Object

To free a master object, we first lock the object to avoid any
race condition while freeing it. If the object to be freed is
in TLog then we cannot immediately free it as there might
be one or more checkpoint copies in CLog that would still
require a reference to the master object during its reclama-
tion. Hence, we insert a tombstone of the master object to
CLog. Tombstone-marked master objects will be freed when
we find them upon CLog reclamation. Note that the lock will
not be released until the master object is freed to prevent
double-free and update-after-free of the master object.

3.11 Recovery

TimeStone’s recovery procedure guarantees no-loss recov-
ery. As mentioned in §3.8, on safe termination of TimeStone,
we free all logs in the non-volatile heap. When there are
non-volatile logs upon start, TimeStone triggers recovery
procedure. The recovery procedure is a two-step process,
which first replays CLog and then replays OLog.
Checkpoint Log Replay. The goal of CLog replay is to
find the latest checkpoint copy associated with each master
object by sequentially examining all CLogs in NVMM. The
replay routine constructs a control header for each master
object that has a corresponding copy in the checkpoint log.
np-latest field in the control header is updated to the newest
copy by comparing commit-ts of all the copies of the same
master object. This sets up the master objects to the last
consistent state before the failure and thus prepares it for
OLog replay.
Operational Log Replay. The goal of OLog replay is to re-
store back to the latest committed state before the failure
occurred. To restore the application back to the last consis-
tent state before the failure, the transactions that happened
after the last checkpoint timestamp (i.e., ckpt-ts stored in
NVMM) should be re-executed from OLog. The transactions
in OLog should be re-executed in the original local-ts order
and should be committed in the original commit-ts order to
avoid any inconsistent view. local-ts ordering is essential to
ensure a consistent version view for replay transactions as it
had during the live execution while a proper commit-ts or-
dering will bring back the application to the same old status
that existed before the failure. Note that the OLog replay does
not require any global state as the CLog replay will establish
the required state (as in the live execution before failure) for
the OLog entry to be correctly executed.
RecoveryTime. The recovery cost inTimeStone is roughly
constant and it is directly proportional to the utilization of
OLog and CLog (number of entries in them) and the worst
case being both the CLog and OLog are full. Apparently, the
OLog entries have to be executed only for the TLog entries
that have not been checkpointed yet. Since our log size is
limited and our TOC logging scheme keeps checkpointing
the updates regularly and hence we do not have to re-execute
all OLog entries that occurred before the failure.

4 Implementation

We implement TimeStone in C and C++. The core library
written in C, which comprises of around 7000 lines of code
and C++ API comprised of 800 lines of code. To abort a
transaction, we use setjmp and longjmp instead of C++ ex-
ception because we found throwing an exception in C++ is
not scalable [77]. We use modified jemalloc allocator as our
non-volatile memory allocator, nv-jemalloc, similar to some
of the previous works [19, 57]. We could not use the PMDK
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allocator [33] or Makalu allocator [7] because of their poor
scalability.

5 Evaluation

In this section, we first show that TimeStone achieve better
scalability and performance across different data structures
under various workload configurations compared to state-of-
the-art DTM systems (§5.1). We then show the effectiveness
of TimeStone for real-world workloads (§5.2). Finally, we
thoroughly analyze the effectiveness of TOC logging in re-
ducing write amplification (§5.3).
Evaluation Platform. We use a system with Intel Optane
DC Persistent Memory (DCPMM) for our evaluation. The
machine consists of two sockets with Intel Xeon Platinum
8280M processors equipped with 28 cores (56 logical cores)
per socket (112 logical cores in total), 1.5 TB of NVMM (12
× 128 GB), and 768 GB of DRAM (12 × 64 GB). We used
gcc 9.1.1 with -O3 flag to compile benchmarks and ran all
experiments on Linux kernel 5.0.9.
Configuration. We preset the size of TLog and OLog to 1MB
and CLog to 4 MB.We also set the high-water mark to 75% for
all logs. We set low-water mark to 50% and 62.5% to TLog and
CLog, respectively. We also present the performance analy-
sis for varying log sizes and analyze the sensitivity of TOC
logging in §5.3. We ran TimeStone for different isolation
levels. Note that TimeStone-SI denotes snapshot isolation
whereas TimeStone-L and TimeStone-S represents lineariz-
ability and serializability versions, respectively. In order to
evaluate the data structures under the snapshot isolation,
we removed the write-skew by locking the adjacent nodes
in addition to the nodes that are being updated as prior
work [24, 45, 60] did. We compare our TimeStone with the
state-of-art DTM systems: DudeTM, Romulus, and Intel’s
PMDK. Both DudeTM and Romulus provide their own mem-
ory allocator, and we ported them such that they allocate
memory on the NVMM. For Romulus, we handpicked Ro-
mulusLR with the best performance. PMDK’s transactional
library libpmemobj does not support isolation, so we use a
standard readers-writer lock to protect a transaction from
concurrent accesses.
5.1 Concurrent Durable Data Structures (CDDS)

We evaluate three persistent data structures–linked list, hash
table, and binary search tree–for three types of workloads
similar to several prior works [3, 31, 81, 96]: 1) read-mostly
(2% update), 2) read-intensive (20% update), and 3) write-
intensive (80% update) operations.
We present the performance and scalability in Figure 5

and present abort ratios in Figure 6 for further analysis of
each DTM systems.
Linked List. Weuse a singly linked list with 10,000 items for
our evaluation. TimeStone exhibits relatively a better scala-
bility across all the workloads than the other DTM systems
but the performance of DudeTM and Romulus are upto 2×

better than TimeStone only for the read-mostly workload
and this happens only in the case of linked list.

For the linked list, DudeTM performs well at a lower core
counts and starts to collapse beyond 16 cores. Since DudeTM
supports decoupled durability–replicating all the persistent
data and logs on the DRAM, the foreground thread just ac-
cesses the replica on DRAM and writes to its volatile log and
the background thread persists the log entries later. That
makes foreground writes much faster and for the same rea-
son persisting by the background thread becomes a high
latency operation. The background thread becomes a bot-
tleneck since it cannot keep up with the rapidly filling of
log entries as the number of foreground thread increases.
This eventually blocks incoming writes and leads to a per-
formance collapse.2 This is more evident in read-intensive
and write-intensive workloads as it collapses after 6 cores.
Unlike DudeTM, TimeStone guarantees immediate durabil-
ity and hence it has to persist its OLog entry upon commit.
TimeStone shows upto 10× lesser abort ratio than DudeTM
and even the stricter isolation version of TimeStone shows
2.5× lesser abort ratio. This is because the underlying fixed-
size central lock table in DudeTM causes spurious aborts. The
decentralized resource allocation helps in achieving better
scalability and lower abort ratio in TimeStone.

As with Romulus, the single writer thread becomes a bot-
tleneck in read-intensive and write-intensive workloads and
for the same reason Romulus performance starts to saturate
after 40 cores in the read-mostly workload. Because of the
inherently larger critical section in the linked list, the single
writer latency is masked in the read-mostly scenario. Note
that Romulus never aborts so its abort ratio is always zero.

Note that although PMDK uses a readers-writer lock due
its additional logging and NVMM allocator overhead in the
critical path causes the performance collapse and poor scala-
bility.
Hash Table. For the evaluation, we create a hash table
with 1,000 buckets, where each bucket points to the head
of a singly linked list. TimeStone outperforms all the other
DTM systems by upto 30× and exhibits a near-linear scalabil-
ity. The cause for the performance collapse in the other DTM
systems is same as observed in the linked list. Pisces [24]
implements a similar hash table with the same load factor
but with 10×more buckets and TimeStone still outperforms
Pisces by 2×-6×. Note that higher number of buckets in-
creases the concurrency and thereby aborts are reduced.3 We
believe that having multiple versions and employing TOC
logging for effectively handling crash consistency makes
TimeStone performs better than Pisces.
Binary Search Tree. In BST, TimeStone performs upto
10× better than the other and exhibits a better scalability.

2 The DudeTM code supports only single-threaded background persist.
3 Because Pisces code is not publicly available, we compare the performance
reported in their paper against our similar hash table configuration.
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0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Linked
list

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

H
ash

table

0.0
0.2
0.4
0.6
0.8
1.0

16 32 48 64 80 96 11
2

0.0
0.2
0.4
0.6
0.8
1.0

16 32 48 64 80 96 11
2

0.0
0.2
0.4
0.6
0.8
1.0

16 32 48 64 80 96 11
2

Binary
search

tree

A
bo

rt
ra
tio

Read-mostly Read-intensive Write-intensive

A
bo

rt
ra
tio

TimeStone-SI
TimeStone-S
TimeStone-L

DudeTM

A
bo

rt
ra
tio

#threads #threads #threads
Figure 6. Abort ratio of concurrent data structures.

The slightly skewed scaling and the TimeStone-SI perform-
ing same as the stricter versions of TimeStone can be at-
tributed to higher chances of lock failure in common an-
cestor nodes (e.g., root node) causing a spike in the abort
ratio. The cause for the performance collapse in the other
DTM systems is same as observed in the linked list. Scal-

ability across Isolation Levels. From our analysis, it is
evident that TimeStone shows a better scalability for all
the three isolation levels. TimeStone-S and TimeStone-L
shows a superior scalability when compared to the lineariz-
able DTM systems such as DudeTM and Romulus. Particu-
larly, for hash table and binary search tree, TimeStone-S and
TimeStone-L shows a similar throughput and abort ratio
as that of TimeStone-SI because of better concurrency of

those data structures. This is perceptible from the abort ratio
also as all the three versions of TimeStone exhibits a similar
abort ratio. In DudeTM, the lesser aborts of a hash table can
also be attributed to the better concurrency levels in the
data structure. Overall, the scalability across read workloads
can be attributed to our MVCC-based design while our TOC
logging equipped with efficient garbage collection makes
TimeStone scalable even for the write-intensive workloads.
5.2 Real World Workload

To analyze the impact of TimeStone for real-world work-
loads, we use Kyoto Cabinet [1] and YCSB benchmark [16].
KyotoCabinet. KyotoCabinet is an in-memory database
which is internally divided into a number of slots and each
slot hosts a number of buckets that point to a binary search
tree. Concurrent access of each slot is protected by a per-slot
lock. We replaced the binary search tree to the TimeStone
binary search tree to provide synchronization and crash con-
sistency for database operations. We compare our implemen-
tation (KyotoCabinet-TimeStone) against the vanilla Kyoto-
Cabinet (KyotoCabinet-vanilla) that runs on the faster DRAM
and KyotoCabinet-NVMM where the binary search trees are
allocated on NVMM. Note that KyotoCabinet-NVMM does
not provide crash consistency so there is no logging opera-
tions involved. As Figure 7 shows, TimeStone outperforms
other systems and scales even with an additional overhead
of providing crash consistency. It is important to note that
KyotoCabinet in general is not scalable [20] and the perfor-
mance starts to saturate after 16 cores. Using TimeStone,
we make KyotoCabinet scale beyond 16 cores in addition to
making KyotoCabinet crash consistent.
YCSB. We implemented a B+-tree forTimeStone andDudeTM
to evaluate YCSB benchmarks. We set the B+-tree fan-out to
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8 and ran 20million operations using an index benchmarking
tool, index-microbench [88]. TimeStone significantly out-
performs DudeTM.4 TimeStone scales reasonably well for
read-dominant YCSB B, C, and D while TimeStone shows
performance dip for YCSB A. That is because high update
ratio in workload A (50%) causes the high latency split and
merge operations in the B+-tree. Overall, TimeStone per-
forms upto 6×more and scales better than DudeTM but there
is 0.5× dip in the performance for write workloads caused
due to the split and merge in B+-tree.
5.3 Analysis on Design Choices

In this section, we show how the TOC logging benefits the
write amplification, how it provides stability to TimeStone
even with a larger dataset size and smaller log size.

5.3.1 Write Amplification

We ran the persistent data structures for write-intensive
workloads and compared it with Romulus and DudeTM
in Figure 9. The write amplification is defined as ratio of
the actual amount of data written to NVMM by the amount
of user request data.

We infer thatTimeStone consistently reduces direct NVMM
writes compared to RomulusLR and DudeTM for the follow-
ing reasons. First, RomulusLR must propagate every updates
to the NVMM backup incurring 2× write amplification. Simi-
larly, DudeTM also writes the user request data to redo log in
NVMM first and writes it back to data location of the NVMM.
4 We could not show full scalability results of DudeTM because the DudeTM
crashes after 30 cores.
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the varying skewness of read-intensive workload. Y-axis is relative
to TLog.

Redo logging in DudeTM significantly increases the write
amplification since it involves not only data but also other
metadata (e.g., address) per transaction. But in TimeStone
only the OLog write goes to NVMM to guarantee immediate
durability. Second, TLog absorbs a large chunk of redundant
NVMM writes as Figure 10 shows. Only ∼ 6% of the total
TLog writes is being checkpointed to CLog and less than 1%
of it is written back to the master. The presence of TLog
becomes more significant if the skewness of the access in-
creases. Third, as depicted in Figure 9, the write amplification
decreases as the thread count increases. This can be attrib-
uted towards higher write coalescing in TLog. So overall, the
TOC logging reduces write amplification by absorbing re-
dundant writes in TLog along with our garbage collection
mechanism which prudently controls the NVMM writes.
Note that write amplification for TimeStone and DudeTM
reduces about ∼0.3× and 2×, respectively, in case of binary
search tree. This is due to the better coalescing chance in
BST as common ancestor nodes more frequently updated.
Romulus write amplification is unchanged because it has to
propagate the updates to the backup heap irrespective of the
underlying data structure.

To glimpse the write amplification in PMDK, we modified
the pmemcheck [34] and observed cacheline flushes incurred
in a PMDK transaction with our hash table benchmark. In
PMDK, each insert operation incurs 18 flushes consisting of
2 flushes for transaction initialization, 6 flushes for NVMM
allocation, and 10 flushes for user data update and logging.
Even a read-only transaction incurs 2 flushes for transac-
tion initialization. Overall we observed surprisingly high write
amplification, 73.5×, for 1-million transactions with 2% writes.
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Figure 11. Performance of TimeStone for a larger hash table size.

5.3.2 Sensitivity Analysis

.
Dataset Size Sensitivity. In order to see how TimeStone
behaves with varying dataset size, we ran the hash table
benchmark for 10× and 100× larger dataset (i.e., 100K and 1M
elements) than Figure 5. As shown in Figure 11, TimeStone
consistently scales even for the 10× and 100× larger datasets.
However, we observe ∼8× drop in the overall throughput for
1M elements; further analysis reveals high cache miss rate
(∼60%) for 1M elements due to increased memory footprint
compared to mere 2% for 100K elements. Overall, TimeStone
shows a stable performance and scalability for both small
(Figure 5) and large dataset (Figure 11).
Log Size Sensitivity. To see how TimeStone behaves with
different log sizes, we ran the hash table benchmark with
the read-intensive workload. We varied all three log sizes
from 1/8× to 8× and measured throughput, the amount of
reclamation, and the number of triggered reclamation. We
did not observe any drop in performance even when log size
is reduced by 1/8×. The amount of log reclamation is about
the same because we ran the same workload. The number of
times the log reclamation triggered increases proportionally
with the decrease in the log size. For example, if the log size is
reduced by 4× then the number of times the log reclamation
is triggered increases by roughly 4×. Since our log reclama-
tion is asynchronous triggering it more frequently does not
impact the throughput of the system. Overall, our effective
log reclamation technique makes TimeStone insensitive to
the varying log sizes and achieves a high throughput even
for a smaller log size.

6 Related Work

NVMM Optimized Logging. There have been a lot of ac-
tive research in storage systems to optimize the logging
protocols for NVMM [5, 28, 40, 46, 48, 68, 69, 72, 73, 78, 87].
Such log optimization techniques consider NVMM as a fast
caching layer for the disk and leverage it for reducing the
recovery cost or the durability cost incurred in the tradi-
tional disk-based logging. Techniques such as [28, 68, 87]
proposes asynchronous commit policies to reduce the dura-
bility cost and to hide the long latency disk persist operations.
Other techniques such as [5, 40, 73] leverages NVMM to cor-
rectly restore the partial disk writes upon recovery. While

the database log optimization techniques primarily focuses
on reducing the durability cost, we in TimeStone propose
TOC logging which is geared not only towards reducing the
durability cost but also focuses on reducing write amplifica-
tion to achieve better performance and scalability.
FASE Techniques. Another line of research for developing
crash consistent NVMM applications utilize a failure-atomic
critical section (FASE) approach, guaranteeing atomicity at
the level of a critical section granularity [12, 23, 27, 49, 58].
This approach focuses on providing failure atomicity to the
legacy lock-based code with little or no focus on the scalabil-
ity and write amplification issues. Moreover, the traditional
FASE-based techniques such as [12, 23, 27, 49] suffers from
complex runtime dependency tracking.While the state-of-art
iDO logging [58] reduces the dependency tracking overhead
but still it needs a specialized compiler support.
HardwareAssistedTechniques. This class leverages STM-
or FASE-based approaches and propose new hardware sup-
port for guaranteeing atomic durability [22, 35, 37, 39, 50, 51,
64, 67, 76, 80, 95]. They interface with hardware buffers to
speed up logging [39, 80, 95] or delegate the process of or-
dering stores to hardware [22, 50, 51, 64], clearly demanding
significant hardware changes and introducing new logging
instructions. Some approaches in this class propose extend-
ing hardware transactional memory (like Intel RTM) for
making atomic updates to NVMM [38, 38, 53]. The perfor-
mance of these techniques are bound by the L1-L3 cache size
and requires changes in the existing cache-coherence proto-
col [38]. Unlike these techniques, TimeStone is completely
software-based capable of running on the modern hardware.

7 Conclusion

In this paper, we propose TimeStone, a scalable and high-
performing DTM framework. We propose TOC logging to
keep write amplification under the check. MVCC-based de-
sign helps TimeStone to achieve better scalability and full-
data consistency. Also, we support three different isolation
levels to improve the applicability of TimeStone. We evalu-
ated the TimeStone against all of the latest DTM works and
we showed that TimeStone outperforms all of them upto
40× and shows a better scalability. While the prior DTM
systems suffers from 2×-6× write amplification, TimeStone
maintains it below 1. We also presented the real world im-
pact of TimeStone by evaluating it with KyotoCabinet and
YCSB workloads. The TimeStone enabled KytoCabinet and
B+-tree shows better performance and scalability. We will
open source TimeStone.
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